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Spline algorithms are evaluated for the non-linear, integro-differential equation describing 
the Hartree-Fock approximation for the He ls”S ground state. The error in the energy 
decreases as hzKm2, where h is a grid parameter and K is the order of the spline. It is shown 
that for higher order splines, the method is fast and accurate, and contrary to the conclusion 
reached by Altenberger-Siczek and Gilbert, that spline methods are suitable for SCF atomic 
structure calculations. Accuracy and timing studies are presented as well as comparisons with 
other accurate procedures. 8 1990 Academic Press, Inc. 

1. INTRODUCTION 

The radial equation for an electron in a coulomb potential along with the 
Hartree-Fock equation for the 1s’ ‘S ground state of helium, are frequently used 
test cases for computational procedures. Both are second-order differential 
equations with two-point boundary conditions that are eigenvalue problems. The 
latter is also a non-linear, integro-differential equation, usually solved by the 
iterative self-consistent field (SCF) method and introduces a number of problems 
not encountered in the radial equation. 

In 1976, Altenberger-Siczek and Gilbert [l] reported results from a study of the 
Hartree-Fock equation for helium using a cubic B-spline basis. In earlier work, the 
effectiveness of cardinal splines had been investigated [2, 31. Unlike cardinal splines 
that are non-zero between the selected grid points (or knots), the B-spline represen- 
tation has ‘finite support” and is non-zero over a set of K intervals, where K is the 
order of the spline. (For a discussion of splines and their representation see 
Refs. [4, 51). The B-spline representation was argued to be preferable over the 
cardinal spline basis for several reasons. Matrices representing a local potential are 
banded within the B-spline representation whereas those for cardinal splines are 
dense, Furthermore, test calculations showed that the error with cardinal splines 
was much larger than the error for B-splines with the same grid. 

Using the cubic B-spline basis for which K = 4, Altenberger-Siczek and Gilbert 
performed the error analysis experimentally using meshes equally spaced in the 
log r variable. They concluded that the error was roughly proportional to NA6, 
where the number of mesh points is N+ 1, for meshes with less than 21 points. By 
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extrapolation, they found that 40 mesh points would be required to reduce the 
relative error 6E/E to lo-’ and nearly 200 points would be needed to reduce the 
error to 10-12. According to their analysis, 2058 N4 arithmetic operations are 
needed to compute the standard supermatrix for the Hartree-Fock operators 
(0(N6) for cardinal splines). This was deemed prohibitively expensive and an SCF 
iteration used instead. During each SCF iteration cycle, the two electron integrals 
must be recalculated requiring 512 N2 operations in their scheme. 

Based on the above discussions as well as their accuracy and timing studies, they 
came to the critical conclusion that spline bases are not suitable for SCF calcula- 
tions. 

In 1979, Roothaan and Soukup [6] reported accurate stable results for the ls2 
ground state of H-, He, Lit, and Be +2 using methods closer to the traditional 
approach [7,8]. The range of integration was partitioned into three regions- 
origin, central, and tail. Near the origin and in the tail region, accurate analytic 
expansions were devised which represented the solution to high accuracy. The 
central region was then solved numerically. The error was reported of the order h”. 

In 1989, Godefroid et al. [9] proposed another method, based on an accurate 
approximation of a variational calculation. The basis functions now are Lagrange 
functions which, like cardinal splines, are non-zero between the mesh points, but 
unlike splines are continuous functions over the range of approximation rather than 
piecewise polynomials. By selecting the N mesh-points to be the zero’s of the 
Laguerre polynomial of degree N, the kinetic energy integrals can be evaluated 
exactly in a trivial fashion. Similarly, the nuclear potential integral can be evaluated 
exactly and, for the hydrogen equation, some remarkably accurate results were 
obtained with only N= 10 mesh points. In effect, their results essentially are exact 
with respect to a finite basis. They also studied the accuracy of the method for the 
ground state of He and H -. However, unless an exact integration of the two-body 
integrals is introduced, we shall see later that their accuracy no longer increases 
rapidly as the number of mesh points increases (recall that slow convergence was 
one of the charges made against the B-spline basis method by Altenberger-Siczek 
and Gilbert [ 11). 

The early tests with the B-splines were restricted to the relatively low order, cubic 
splines. Since then, general spline algorithms have become available [S] and 
calculations with higher-order splines can be performed as readily as with cubic 
splines. Johnson et al. [lo] have used B-splines extensively in perturbation theory 
calculations. Splines have also been evaluated by Froese Fischer and Idrees [ 121 
for the solution of continuum problems, where the differential equations are linear. 
In this paper, the spline procedures are re-evaluated for the non-linear Hartree- 
Fock equation and a new procedure analyzed for evaluating the two-electron 
integrals. Timing studies and error analyses are reported and compared with the 
previous methods. 
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2. THE HARTREE-FOCK EQUATION AND ITS SOLUTION 

The Hartree-Fock equation for the radial function, Pi,(r), of the 1s orbital 
defining the 1s’ ground state of a two-electron system, with nuclear charge Z, is the 
solution of the boundary value problem (Froese Fischer, Ref. [7]) 

( 2 2 
$+;(Z- YO(ls, ls;r))-E 

) 
P&)=0, 

pi,(r) = 0 and PI,(r) -+ 0 as r-+co. 

The function, Y’(ls, 1s; r), represents the screening of the nucleus by the other 
electron and is defined as 

Y”( Is, 1s; r) = 1: P:,(s) ds + jrrn 5 P:,(s) ds. (2) 

Note that the presence of the Y” term makes the problem a non-linear, integro- 
differential equation of eigenvalue type. This problem is usually solved iteratively by 
the self-consistent field method as follows [8]: 

l Let an initial estimate of PI,(r) to be a hydrogenic function 
l until converged 

- Compute Y” using the current estimate of Pis(r). 
- Solve the linear differential equation for a new estimate of PI,(r). 

A spline approximation over an interval [a, b], is a piecewise polynomial 
approximation of degree K- 1, for which the function and all derivatives up to 
degree K - 2 are continuous. The subintervals are defined by a grid or set of knots. 
In a B-spline approach, the radial function is represented as a linear combination 
of spline basis functions, B,(r), i=O, . . . . N+ K- 2 for an interval [O, rmax], N 
representing the number of subintervals. Applying the boundary conditions 
eliminates the first and last basis function. Thus 

N+K-3 

PI,(r) x P,,(r) = C ciBi(r). (3) 

The Galerkin method [ 111 of solving the general differential equation 
S?I’,,(r) = 0, requires that 

5 co B,(r)=Yp,,(r) dr = 0, j = 1, . . . . N-i-K-3. 
0 

This condition leads to the generalized eigenvalue problem, 

(A-EC)c=O, 
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where A = (a,), and B = (b,) are symmetric matrices of dimension M = N+ K- 3, 
with 

ati== 
1 ( 

O” q(r) $+f (Z- YO(ls, 1s;r)) Bj(P)& 
0 > 

b, = j- Bi(r)Bj(r) dr, 
0 

and E” is an approximation to an eigenvalue of the differential equation. Because of 
the piecewise polynomial nature of the B-spline, the evaluation of the matrix 
elements reduces to a sum of integrals over those intervals where both Bi(r) and 
B,(r) are non-zero. Gaussian quadrature using K points was used for each interval. 

- Only one eigenvector is required, and since the estimates of c improve as the SCF 
iterations proceed, inverse iteration was used along with the Rayleigh-quotient [S] 
to find the approximation to the eigenvalue, namely E and the associated eigen- 
vector. The LINPACK routines [ 131, DGBFA and DGBSL for banded structures, 
were used to solve the system of equations. 

To solve the differential equation numerically by the spline method, the range 
(0, cc) must be divided into a set of subintervals, over [0, rmax], with p,,(r) = 0 for 
r > ha,. Earlier numerical procedures used a grid, which required special series 
expansions near the origin [7]. One of the advantages of spline procedures is that 
the grid can easily change from one region to another. We used an exponential grid 
(sometimes also called a logarithmic grid because the grid points are equally spaced 
in the log(r) variable) along with an equally spaced grid near the origin. In order 
to generate the complete spline basis, points of multiplicity K are introduced at the 
end-points of the range. The one dimensional grid was defined in terms of a step 
parameter, h = 2-” as follows: 

Z* ri=O for i = 1, . . . . K 

=(i-K)h for i=K+l, K+2,..., K+2” 

=ri-I* (1 +h) for i= K+2”+ 1, . . . . N+K 

=N+K for i=N+ K+ 1, . . . . N+2K- 1. 

Because of the iterative nature of the SCF method, additional features could be 
added to the algorithm such as the automatic adjustment of rmax=rMX, 
MXd N + K. As long as the initial range was sufficiently large, MX could be 
reduced to eliminate the negligible “tail” of the expansion of Eq. (3) which, in turn, 
reduces the size of the matrix that needs to be considered in the eigenvalue problem. 
The criterion used for range reduction was Ic~+~-,~ < 10-13. 

Similarly, if the last two coefficients in the expansion were too large, namely their 
sum of absolute values was > lo-“, the value of MX was increased. In this 
manner, the range of the solution was allowed to adapt to the solution and the 
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requested level of accuracy, eliminating the possibility of an erroneous or inefficient 
choice of I,,, . 

The changes in the function Y” from one iteration to the next are such that the 
sequence of eigenvalues oscillate about the converged, self-consistent value. In order 
to speed the convergence, a weighting parameter o (or accelerating parameter) was 
introduced so that 

P -next = ( 1 _ o) jJcomputed + O~previous. 

Since it is convenient to assume that P is normalized, B-x’ was normalized. The 
algorithm for damping or relaxing the oscillations was the same as the one used 
successfully for many years by MCHF [7, 81. 

3. SOLVING FOR FUNCTIONSY~ 

The presence of the Y”( Is, 1s; r) function in Eq. (1) makes the problem 
non-linear. This function is a special case of a more general integral entering into 
two-electron Slater integrals, namely, 

Several approaches can be taken to determining Yk. One would be to evaluate the 
integrals for those values of r needed for the Gaussian quadrature calculation of the 
matrix elements aV. Such integrations were done in the continuum calculations but 
lead to lengthy procedures [ll]. More typically, the Yk functions are determined 
from differential equations. When finite differences were used, it was customary [7] 
to integrate first-order differential equations outward for the first term of Eq. (4) 
and inward for the Yk function. But this pair of equations can be combined into a 
single second-order differential equation, 

k(k+ 1) 
f Y’(r)=7 

2k+ 1 
Y*(r)-- Pdr Pdr), r 

with boundary conditions 

Y&(O) = 0, 

f Yk(r) =$ Yk(r) as r+co, 

and solved by the spline Galerkin method, in the same way as the equation for 
PI,(r). This leads to a banded linear system of equations for the expansion of Yk(r). 
The last equation in this system arises from applying the boundary condition at 
r = rMX. 
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TABLE I 

Values of F’(ls, 1s) Obtained Using the Spline Galerkin Method 
for a Series of Values of K and h 

K h=l/2 h=1/4 h=1/8 

3 1.2495956407295 1.2499697638865 1.2499980392691 

4 1.2499723357051 1.2499994968798 1.2499999904072 

5 1.2500001146424 1.2499999930235 1.2499999999597 

6 1.2499980586619 1.2499999997814 1.2499999999998 

7 1.2500009176233 1.2500000000754 1.2500000000000 

8 1.2500024217236 1.2499999997972 1.2500000000000 

9 1.2499932020168 1.2500000003663 1.2500000000000 

10 1.2500094438748 1.2499999996700 1.2500000000000 

11 1.2499913532449 1.2499999999725 1.2500000000000 

12 1.2500045106909 1.2500000005390 1.2500000000000 

13 1.2500012611142 1.2499999991367 1.2500000000000 

14 1.2499933959515 1.2500000007486 1.2500000000000 

15 1.2500099891306 1.2499999997904 1.2500000000000 

Note. The exact value of this integral for Z = 2 and a hydrogenic 
P,,(r) in 1.25. 

The accuracy of this procedure was tested by computing the Slater integral 

P(ls, l+jom (i) Y”( Is, 1s; r) P;,(r) dr 

using a hydrogenic function Pi, for which the integral is known to be exactly 1.25 
when Z= 2. Table I shows values of this integral for a range of parameters h and 
K. Note that for h = 4, the best accuracy is achieved for K= 5, that the accuracy 
does not improve with the higher values of K. For h = $, an exact result is obtained 
for K = 7, and almost exact for K = 6. 
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4. ACCURACY AND TIMING STUDIES 

The calculations in this paper are restricted to the Helium ground state where 
z= 2. 

The procedures outlined above depend on a number of parameters. The 
parameter Y,,, depends, in general, on the eigenfunction and the accuracy to which 
the function is to be represented. For a higher eigenstate, the wave functions extend 
further to infinity, and rmax needs to be larger. For the ground state, and the cutoff 
criterion of lo-‘*, rmax was found to be in the neighborhood of 22. 

There are two other fundamental parameters of the calculation. One is the 
step-size parameter h and the other is the order K. Ideally, one would like to find 
that combination of parameters for which a given accuracy can be obtained in the 
least amount of CPU time. Such a criterion ignores the role of memory which could 
be a critical resource but, as in the studies mentioned earlier, the evaluation of an 
algorithm is usually based on arithmetic operations or CPU time. In order to gain 
an understanding of the interplay of step-size and order, timing studies have been 
performed for all combinations of h = 2 -“‘, m = 0 to 5, and K= 3 to 15. 

For the helium ground state, the total energy of the system is 

E=2Z(ls)+FO(ls, Is), 

where 

Z(ls)= -(1/2)~omP,,(r)($+~)P,,(r)dr. 

The first term in this expression is part of the kinetic energy operator, say T; the 
rest together with the Slater integral, F”, represent the potential energy, V. For an 
exact variational calculation and a complete basis, the virial theorem states that 

V/T= -2. 

Because in this case the exact energy is not known, the value of 2 + V/T was used 
as a measure of the error in the calculation. Table II reports the results for h = 4 
and h=$. 

The error versus the execution time is plotted in Fig. 1 for a number of different 
combinations of the parameters. Each curve is for a constant value of h and a range 
of K values from 3 to 15. For the least amount of CPU time, the leftmost curve 
with the lowest degree of accuracy is the one with h= 4, but as the accuracy 
increases, the h = $ curve is the leftmost one, representing the least amount of CPU 
time. The other two curves are for h = h and h = 8. Each curve becomes essentially 
“flat” in the region where the finite precision of the floating point arithmetic 
becomes a limiting factor. The best accuracy seems to be just under 13 significant 
digits. From Fig. 1, we can see that the optimum parameters to achieve this 
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TABLE II 

Hartree-Fock Results for Different Parameters, K and M= N + K - 1, 
Using the Spline Galerkin Method 

h K M Energy V T 2 t V/T 

l/2 3 25 -2.8614677389529 -5.7221730299525 2.8607052909996 -2.67(-04) 

4 26 -2.8616792915868 -5.7233563243103 2.8616770327235 -7.89(-07) 

5 27 -2.8616799885673 -5.7233599772565 2.8616799886891 4.26(-11) 

6 28 -2.8616799954178 -5.7233599910755 2.8616799956577 8.38(-11) 

7 29 -2.8616799956240 -5.7233599912265 2.8616799956024 -7.53(-12) 

8 30 -2.8616799955421 -5.7233599911527 2.8616799956106 2.39(-11) 

9 31 -2.8616799955979 -5.7233599912091 2A616799956113 4.69(-12) 

10 32 -2.8616799957999 -5.7233599914109 2.8616799956110 -6.60(-11) 

11 33 -2.8616799953127 -5.7233599909233 2.8616799956106 1.04(-10) 

12 34 -2.8616799958695 -5.7233599914816 2.8616799956122 -8.99(-11) 

13 35 -2.8616799955650 -5.7233599911771 2.8616799956121 1.65(-11) 

14 36 -2.8616799953831 -5.7233599909952 2.8616799956121 8.01(-11) 

15 37 -2.8616799960339 -5.7233599916460 2.8616799956121 -1.47(-10) 

l/8 3 43 -2.8616663245256 -5.7232844124722 2.8616180879466 -1.69(-05) 

4 44 -2.8616799825485 -5.7233599248684 2.8616799423199 -1.41(-08) 

5 45 -2.8616799955797 -5.7233599912031 2.8616799956234 1.53(-11) 

6 46 -2.8616799956110 -5.7233599912233 2.8616799956124 4.74(-13) 

7 48 -2.8616799956113 -5.7233599912235 2.8616799956122 3.18(-13) 

8 49 -2.8616799956113 -5.7233599912235 2.8616799956122 3.02( - 13) 

9 50 -2.8616799956114 -5.7233599912236 2.8616799956122 2.63(-13) 

10 51 -2.8616799956114 -5.7233599912235 2.8616799956122 2.87(-13) 

11 53 -2.8616799956114 -5.7233599912236 2.8616799956122 2.79(-13) 

12 54 -2.8616799956114 -5.7233599912236 2.8616799956122 2.78( -13) 

13 55 -2.8616799956114 -5.7233599912236 2.8616799956122 2.72( - 13) 

14 56 -2.8616799956114 -5.7233599912236 2.8616799956122 2.81(-13) 

15 57 -2.8616799956115 -5.7233599912236 2.8616799956122 2.56(-13) 

Note. Included is the total energy (in au.), the potential energy V, the kinetic energy 

T, and 2 + V/T, which is a measure of the error. The notation n.nn (-mm) is used to 
represent n.nn x 10-m”. 
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FIG. 1. Plot showing the dependence of log,,, 12 + V/7j versus the CPU time for a series of calcula- 
tions for all possible combinations of h = 2 -“‘, WI = 2, . . . . 5, and K = 3, . . . . 15. The curves are for constant 
h with the topmost point on the left being on the curve with h = f, the next curve being h = f, etc. 

accuracy in the minimum amount of CPU time are h = f and k = 6. Table II shows 
that this calculation required 46 basis functions and that the error is 5.2 x 10-13, 
just slightly smaller than the error of 7.0 x lo-l3 derived from the values reported 
by Roothaan and Soukup [6 3 who used 2.51 integration points. Our total energy 
is slightly higher than their value; they applied the analytic tail correction at rmax = 20. 

Figure 1 also shows that the accuracy increases very rapidly at first as K 
increases and then stabilizes. Analysis of the early portion of the data, where 
rounding errors are negligible, show that the asymptotic behavior of the error in 
both the virial theorem and the energy is I!!J(~*~-*). (The error in the energy was 
computed as the difference with the energy obtained from the optimum parameters.) 
Thus, the higher the K value, the more rapidly the error decreases as h decreases. 

Godefroid et al’s method [9], on the other hand, converges much more slowly 
as the number of mesh points increase when approximate, but rapid integration 
procedures are used for the electrostatic interaction. Ideally, the two methods 
should be compared on the basis of accuracy versus CPU time, since their proce- 
dure was designed specifically to minimize the time required for evaluating matrix 
elements. Such information is not available. Instead, Hartree-Fock results are 
presented for 10, 30, and 70 mesh points. To facilitate a comparison, Fig. 2 shows 
the dependence of the accuracy of our method on the number of basis functions, 
N + K- 1, for h = 1 and h = i, and the same range of K values as in Fig. 1. There 
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FIG. 2. Plot showing the dependence of log,, 12 + V/u versus the number of basis spline for a series 
of calculations, with K = 3, . . . . 15. The topmost curve is for h = 1 with nine intervals; the second for h = 4 

with 10 intervals. 

were N= 9 and N = 10 intervals in the range of approximation for the two curves 
respectively. 

Figure 2, shows that the absolute error is already less than lo-’ when the 
number of basis functions is equal to 13. The smallest error reported by Godefroid 
et al. was 14 x 10P4, 6 x 10d4, and 2 x lop4 for N= 10, 30, and 70, respectively. On 
the other hand, with an “exact” Y,,( Is, 1s; Y) function and an optimum value of h, 
their error in V/T is 1.5 x lo-’ with only 10 mesh points. 

These studies, as well as the earlier spline investigations, show that the critical 
step in the Hartree-Fock calculation is the evaluation of the Yk functions arising 
from the Slater integrals in the energy expression. 

5. CONCLUSIONS 

On the basis of studies using the cubic spline (K= 4), Altenberger-Siczek and 
Gilbert concluded that the spline approach was not suitable for Hartree-Fock 
atomic structure calculations and that the desired degree of accuracy could not be 
achieved with sufficient speed. In this paper we have shown that, by going’to higher 
degree splines, a high degree of accuracy can be achieved with a relatively small 
basis set. Our studies show that, for a grid that is linear near the origin and 
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exponential at larger values, the optimum choice of parameters are h = $ and K = 6 
requiring 46 basis functions with Y,,, = 22. 

The present calculations were performed on a SUN 3/160 with a floating point 
accelerator. Issues of vectorization or concurrency were not considered. For the 
more complex multiconliguration Hartree-Fock calculations these will be 
important issues. In particular, the spline routines [S] will need to be redesigned 
to permit more efficient vectorization. The present codes tend to have vector length 
of K; a better organization would be one where vectors are of length N or NS K. 
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